首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   158篇
  免费   39篇
  国内免费   64篇
地球物理   12篇
地质学   241篇
海洋学   2篇
综合类   4篇
自然地理   2篇
  2022年   1篇
  2021年   7篇
  2020年   8篇
  2019年   2篇
  2018年   7篇
  2017年   14篇
  2016年   13篇
  2015年   4篇
  2014年   7篇
  2013年   9篇
  2012年   12篇
  2011年   7篇
  2010年   8篇
  2009年   12篇
  2008年   9篇
  2007年   13篇
  2006年   10篇
  2005年   9篇
  2004年   12篇
  2003年   12篇
  2002年   4篇
  2001年   3篇
  2000年   8篇
  1999年   14篇
  1998年   9篇
  1997年   6篇
  1996年   4篇
  1995年   8篇
  1994年   4篇
  1993年   7篇
  1992年   5篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   4篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
排序方式: 共有261条查询结果,搜索用时 187 毫秒
1.
《地学前缘(英文版)》2020,11(4):1189-1201
Numerous lenses of garnet amphibolite occur in the garnet-bearing biotite-plagioclase gneiss belt in the Baishan area of the Beishan Orogen,which connects the Tianshan Orogen to the west and the Mongolia-Xing'anling Orogen to the east.The study of metamorphism in Beishan area is of great significance to explain the tectonic evolution of Beishan orogen.According to the microstructures,mineral relationships,and geothermobarometry,we identified four stages of mineral assemblages from the garnet amphibolite sample:(1) a pre-peak stage,which is recorded by the cores of garnet together with core-inclusions of plagioclase(Pl_1);(2) a peak stage,which is recorded by the mantles of garnet together with mantle-inclusions of plagioclase(Pl_2)+amphibole(Amp_1)+Ilmenite(Ilm_1)+biotite(Bt_1),developed at temperature-pressure(P-T) conditions of 818.9-836.5℃ and7.3-9.2 kbar;(3) a retrograde stage,which is recorded by garnet rims + plagioclase(Pl_3)+amphibole(Amp_2)+orthopyroxene(Opx_1)+biotite(Bt_2)+Ilmenite(Ilm_2),developed at P-T conditions of 796.1-836.9℃ and5.6-7.5 kbar;(4) a symplectitic stage,which is recorded by plagioclase(Pl_4)+orthopyroxene(Opx_2)+amphibole(Amp_3)+biotite(Bt_3) symplectites,developed at P-T conditions of 732 ±59.6℃ and 6.1 ±0.6 kbar.Moreover,the U-Pb dating of the Beishan garnet amphibolite indicates an age of 301.9 ±4.7 Ma for the protolith and 281.4±8.5 Ma for the peak metamorphic age.Therefore,the mineral assemblage,P-T conditions,and zircon U-Pb ages of the Beishan garnet amphibolite define a near-isothermal decompression of a clockwise P-T-t(Pressure-Temperature-time) path,indicating the presence of over thickened continental crust in the Huaniushan arc until the Early Permian,then the southern Beishan area underwent a process of thinning of the continental crust.  相似文献   
2.
Linking ages to metamorphic stages in rocks that have experienced low‐ to medium‐grade metamorphism can be particularly tricky due to the rarity of index minerals and the preservation of mineral or compositional relicts. The timing of metamorphism and the Mesozoic exhumation of the metasedimentary units and crystalline basement that form the internal part of the Longmen Shan (eastern Tibet, Sichuan, China), are, for these reasons, still largely unconstrained, but crucial for understanding the regional tectonic evolution of eastern Tibet. In situ core‐rim 40Ar/39Ar biotite and U–Th/Pb allanite data show that amphibolite facies conditions (~10–11 kbar, 530°C to 6–7 kbar, 580°C) were reached at 210–180 Ma and that biotite records crystallization, rather than cooling, ages. These conditions are mainly recorded in the metasedimentary cover. The 40Ar/39Ar ages obtained from matrix muscovite that partially re‐equilibrated during the post peak‐P metamorphic history comprise a mixture of ages between that of early prograde muscovite relicts and the timing of late muscovite recrystallization at c. 140–120 Ma. This event marks a previously poorly documented greenschist facies metamorphic overprint. This latest stage is also recorded in the crystalline basement, and defines the timing of the greenschist overprint (7 ± 1 kbar, 370 ± 35°C). Numerical models of Ar diffusion show that the difference between 40Ar/39Ar biotite and muscovite ages cannot be explained by a slow and protracted cooling in an open system. The model and petrological results rather suggest that biotite and muscovite experienced different Ar retention and resetting histories. The Ar record in mica of the studied low‐ to medium‐grade rocks seems to be mainly controlled by dissolution–reprecipitation processes rather than by diffusive loss, and by different microstructural positions in the sample. Together, our data show that the metasedimentary cover was thickened and cooled independently from the basement prior to c. 140 Ma (with a relatively fast cooling at 4.5 ± 0.5°C/Ma between 185 and 140 Ma). Since the Lower Cretaceous, the metasedimentary cover and the crystalline basement experienced a coherent history during which both were partially exhumed. The Mesozoic history of the Eastern border of the Tibetan plateau is therefore complex and polyphase, and the basement was actively involved at least since the Early Cretaceous, changing our perspective on the contribution of the Cenozoic geology.  相似文献   
3.
We report U–Pb zircon ages of c. 700–550 Ma, 262–220 Ma, 47–38 Ma and 15–14 Ma from amphibolites on Naxos Island in the Aegean extensional province of Greece. The zircon has complex internal structures. Based on cathodoluminescence response, zoning and crosscutting relationships a minimum of four zircon growth stages are identified: inherited core, magmatic core, inner metamorphic (?) rim and an outer metamorphic rim. Trace element compositions of the amphibolites suggest igneous differentiation and crustal assimilation. Zircon solubility as a function of saturation temperatures, Zr content and melt composition indicates that the zircon did not originally crystallize in the mafic bodies but was inherited from felsic precursor rocks, and subsequently assimilated into the mafic intrusives during emplacement. Zircon inheritance is corroborated by the complex, xenocrystic nature of the zircon in one sample. Ages of c. 700–550 Ma and 262–220 Ma are assigned to inherited zircon. Available geochemical data suggest that the 15–14 Ma metamorphic rims grew in situ in the amphibolites, corresponding to a high‐grade metamorphic event at this time. However, the geochemical data cannot conclusively establish if the c. 40 Ma zircon rims also grew in situ, or whether they were inherited along with the xenocrystic cores. Two scenarios for emplacement of the mafic intrusives are discussed: (i) Intrusion during late‐Triassic to Jurassic ocean basin development of the Aegean realm, in which case the 40 Ma zircon rims would have grown in situ, and (ii) emplacement in the Miocene as a result mafic underplating during large‐scale extension. In this case, only the 15–14 Ma metamorphic outer rims would have formed in situ in the amphibolitic host rocks.  相似文献   
4.
The Anshan–Benxi iron producing area, which is located at the northeastern margin of the North China Craton, is the main distribution area of Archaean BIFs in China. In their eastern part, including the Gongchangling and Waitoushan deposits, BIFs mainly are hosted in the Archaean middle Anshan Group. Amphibolites are widely distributed in the iron‐bearing rock series, reflecting the tectonic setting of BIFs. Amphibolites not only have MORB‐like compositional characteristics, but also have island arc‐like ones, and they are consistent with back‐arc basin basalts (BABB). In the study area, the protolith of amphibolites belongs to Okinawa‐type BABB; it indicates that tectonic setting of BIFs is the intra‐continental back‐arc basin. In the study area, the formation of sedimentary basins for BIFs had been associated with oceanic plate subduction. Amphibolites from Gongchangling deposit are characterized by relative enrichments in LILE and LREE, and depletions in HFSE. This indicates that they had a relatively large influence of subduction in their formation. Amphibolites from Waitoushan deposit are characterized by relative enrichments in LILE without conspicuous depletions in HFSE, indicating relatively low subduction rates. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
5.
Much of the exposed Archean crust is composed of composite gneiss which includes a large proportion of intermediate to tonalitic material. These gneiss terranes were typically metamorphosed to amphibolite to granulite facies conditions, with evidence for substantial partial melting at higher grade. Recently published activity–composition (a?x) models for partial melting of metabasic to intermediate compositions allows calculation of the stable metamorphic minerals, melt production and melt composition in such rocks for the first time. Calculated P?T pseudosections are presented for six bulk rock compositions taken from the literature, comprising two metabasic compositions, two intermediate/dioritic compositions and two tonalitic compositions. This range of bulk compositions captures much of the diversity of rock types found in Archean banded gneiss terranes, enabling us to present an overview of metamorphism and partial melting in such terranes. If such rocks are fluid saturated at the solidus, they first begin to melt in the upper amphibolite facies. However, at such conditions, very little (< 5%) melt is produced and this melt is granitic in composition for all rocks. The production of greater proportions of melt requires temperatures ~800–850 °C and is associated with the first appearance of orthopyroxene at pressures below 8–9 kbar or with the appearance and growth of garnet at higher pressures. The temperature at which orthopyroxene appears varies little with composition providing a robust estimate of the amphibolite–granulite facies boundary. Across this boundary, melt production is coincident with the breakdown of hornblende and/or biotite. Melts produced at granulite facies range from tonalite–trondhjemite–granodiorite for the metabasic protoliths, granodiorite to granite for the intermediate protoliths and granite for the tonalitic protoliths. Under fluid‐absent conditions the melt fertility of the different protoliths is largely controlled by the relative proportions of hornblende and quartz at high grade, with the intermediate compositions being the most fertile. The least fertile rocks are the most leucocratic tonalites due to their relatively small proportions of hydrous mafic phases such as hornblende or biotite. In the metabasic rocks, melt production becomes limited by the complete consumption of quartz to higher temperatures. The use of phase equilibrium forward‐modelling provides a thermodynamic framework for understanding melt production, melt loss and intracrustal differentiation during the Archean.  相似文献   
6.
锡林浩特岩群是内蒙古中东部锡林郭勒微地块内原锡林郭勒杂岩的重要组成部分,由一套片麻岩夹层状斜长角闪岩、磁铁石英岩和变粒岩等变质岩组成,形成于中元古代[1]。岩群中片麻岩样品显示轻稀土元素富集的中等分异特征((La/Yb)N=4.71~7.97),斜长角闪岩具有平坦型((La/Yb)N=0.74~0.95)和轻稀土元素微弱富集型((La/Yb)N=1.06~3.63)两种稀土元素配分模式。在微量元素N MORB标准化图解中,斜长角闪岩显示出洋中脊玄武岩和岛弧玄武岩的过渡类型特征。同时结合岩相学和岩石地球化学图解分析,推断片麻岩原岩为富含泥质的亚杂砂岩,而斜长角闪岩原岩为一套具有拉斑质到钙碱性过渡型特征的玄武岩;变质沉积岩形成于活动大陆边缘大陆岛弧环境;变质基性火山岩形成于岛弧弧后盆地。二者指示锡林浩特岩群形成于活动大陆边缘体系。  相似文献   
7.
On 28 December 2002, new vents opened on the flanks of Stromboli, just below the summit craters, interrupting the persistent activity of the volcano with a 7-month-long effusive eruption. We here report on the plagioclase size distribution (PlgSD) in lava samples collected following the chronology of the 2002–2003 eruption. Data reveal a linear PlgSD similar to that found in samples of normal Stromboli activity, indicating that the switch from Strombolian explosive to effusive activity is not associated with changes in texture. Nevertheless, the crystal size distribution slopes and intercepts exhibit slight sinusoidal temporal variations that are here ascribed to a magma supply mechanism able to induce “resonance” in the crystal size distribution, with an amplitude that depends on the supply rate.  相似文献   
8.
基于详细的野外地质调查,对南辽河群下部里尔峪组斜长角闪岩进行了岩相学和地球化学研究。岩相学研究表明,南辽河群下部里尔峪组斜长角闪岩属于正变质岩。地球化学研究显示,这些斜长角闪岩原岩属于高铁拉斑玄武岩系列(Nb/Y=0.16~0.4),SiO_2含量为47.27%~50.68%,具有较低的TiO_2含量(0.92%~1.61%),亏损高场强元素(Nb、Ta、Zr、Hf等),表明其原岩形成于岛弧或活动大陆边缘,而非前人所说的大陆裂谷。综合岩相学和地球化学特征,初步认为其岩石成因与活动大陆边缘有关。  相似文献   
9.
昌宁-孟连结合带牛井山地区发育以构造岩片和透镜体形式产出的斜长角闪岩,其对于认识和恢复昌宁-孟连结合带特提斯演化历史具有重要意义。本研究对牛井山蛇绿混杂岩带内的斜长角闪岩进行了系统的岩石学、锆石U-Pb定年、Hf同位素及全岩地球化学研究。锆石CL图像揭示斜长角闪岩锆石为岩浆成因锆石。锆石U-Pb定年结果为272±1.2 Ma(MSWD=1.1,n=21),代表斜长角闪岩原岩时代。岩石地球化学分析表明,斜长角闪岩Si O2含量为51.83%~52.6%,全碱(Na2O+K2O)含量为3.33%~4.16%,Na2O/K2O比值为5.8~19.8,属于低钾拉斑玄武岩系列。微量元素结果表明斜长角闪岩具有N-MORB的地球化学特征。原岩恢复研究揭示斜长角闪岩的原岩为272±1.2 Ma的N-MORB型辉长岩。斜长角闪岩锆石初始(176Hf/177Hf)i值为0.282906~0.282956,对应的εHf(t)为10.7~12.5;单阶段亏损地幔Hf模式年龄tDM1为416~499 Ma(平均值为466Ma),明显老于原岩结晶时代。岩石地球化学特征和锆石Hf模式年龄揭示昌宁-孟连特提斯洋在272 Ma时具有一个长期亏损的地幔,地幔年龄为早古生代416~499 Ma。结合该带存在早古生代洋壳残余及洋壳俯冲成因埃达克岩的事实,我们认为昌宁-孟连带是一个连续演化的原-古特提斯洋,晚古生代272 Ma时还存在洋中脊扩张并产生具有N-MORB性质的洋壳。  相似文献   
10.
基于速率与状态依赖性摩擦本构关系理论框架,在热水条件下研究了角闪石断层泥的摩擦滑动性质并与闪长岩的另一种主要矿物斜长石的摩擦滑动性质进行了对比.摩擦实验是在三轴实验系统上完成,有效正应力200 MPa,孔隙压力30 MPa,并将加载速率在1.22 μm/s和 0.122 μm/s之间实施了切换.结果表明角闪石的摩擦系数均值为0.70±0.01,随着温度增加没有系统性的变化,整体低于斜长石的摩擦系数(0.75±0.01);计算与实验表明,角闪石和斜长石的摩擦系数的体积分数加权平均值与闪长岩的摩擦系数基本一致;角闪石在实验温度范围内(100~614 ℃)显示速率强化(a-b>0),与斜长石在整个温度范围内的速率弱化(a-b<0)正好相反;角闪石的速率依赖性在整个实验温度范围内无系统性的变化.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号